Abstract.A three-dimensional finite element model of cold pilgering of stainless steel tubes is developed in this paper. The objective is to use the model to increase the understanding of forces and deformations in the process. The focus is on the influence of vertical displacements of the roll stand and axial displacements of the mandrel and tube. Therefore, the rigid tools and the tube are supported with elastic springs. Additionally, the influences of friction coefficients in the tube/mandrel and tube/roll interfaces are examined. A sensitivity study is performed to investigate the influences of these parameters on the strain path and the roll separation force. The results show the importance of accounting for the displacements of the tube and rigid tools on the roll separation force and the accumulative plastic strain.