A highly senstive and rapid LC-MS/MS method has been developed and validated for the estimation of desvenlafaxine in rabbit plasma. The chromatographic separation was performed with 0.2% formic acid: methanol at flow rate of 0.4 mL/min on Symmetry Shield RP18 column with a total run time of 3.0 min. TheMS/MS ion transitions monitored were 263.90 58.10 for desvenlafaxine and 281.30 86.10 for IS (metaprolol). Method validation and pre-clinical sample analysis were performed as per FDA guide lines and the results met the acceptance crieteria. The lower limit of quantification achieved was 0.5 ng/mL and the linearity was observed from 0.5 to 1500ng/mL. This novel method has been applied to pharmacokinetic study of desvenlafaxine in rabbits. Page 2 of 6 10ASvp) and auto-sampler (SIL-HTC) along with a system controller (SCL-10Avp) was used to inject 2 μL aliquots of the processed samples on a Symmetry Shield RP18 column (50 x 4.6 mm, 3.5 μm, Waters Corporation, Ireland, UK), which was kept at ambient temperature (24 ± 2°C). The isocratic mobile phase, a mixture of 0.2% formic acid and methanol mixture (20:80, v/v) was filtered through a 0.45 μm membrane filter (Millipore) and then degassed ultrasonically for 5 min was delivered at a flow rate of 0.40 mL/min into the mass spectrometer electro spray ionization chamber.
Mass spectrometry operating conditionsQuantification was achieved by MS/MS detection in positive ion mode for analyte and IS using a MDS Sciex (Foster City, CA, USA) API 4000 mass spectrometer, equipped with a Turboionspray™ interface at 500°C. The common parameters, i.e. curtain gas, nebulizer gas, auxillary gas and collision gas, were set at 10, 35, 40 and 6 psi, respectively. The compounds parameters, i.e. declustering potential (DP), collision energy (CE), collision exit potential (CXP) and entrance potential (EP) for DVS and IS were 60, 43, 8, 10 V and 44, 26, 8, 10 V, respectively. Detection of the ions was performed in the multiple reaction monitoring (MRM) mode, monitoring the transition of the m/z 263.90 precursor ion to the m/z 58.10 product ion for DVS and m/z 281.30 precursor ion to the m/z 86.10 product ion for IS. Quadrupole Q1 was set on low resolution where as Q3 was set on unit resolution. The analytical data were processed by Analyst software (version 1.4.2).
Preparation of stock and standard solutionsPrimary stock solutions of DVS for preparation of standard and quality control (QC) samples were prepared from separate weighing. The primary stock solutions were prepared in methanol (1000 μg/mL). The IS stock solution of 1000 μg/mL was prepared in methanol. The stock solutions of DVS and IS were stored at 4°C, which were found to be stable for one month (data not shown) and successively diluted with methanol to prepare working solutions to prepare the calibration curve (CC). Another set of working stock solutions of DVS were made in methanol (from primary stock) for preparation of QC samples. Working stock solutions were stored at approximately 4°C for a week (data not shown). A...