2021
DOI: 10.21203/rs.3.rs-598394/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A fully automatic deep learning system for L3 slice selection and body composition assessment on abdominal computed tomography. 

Abstract: Background and aims: As sarcopenia research has been gaining emphasis, the need for quantification of abdominal muscle on computed tomography (CT) is increasing. Thus, a fully automated system to select L3 slice and segment muscle in an end-to-end manner is demanded. We aimed to develop a deep learning model (DLM) to select the L3 slice with consideration of anatomic variations and to segment cross-sectional areas (CSAs) of abdominal muscle and fat. Methods: Our DLM, named L3SEG-net, was composed of a YOLOv3-b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?