2019
DOI: 10.1016/j.geomphys.2019.05.013
|View full text |Cite
|
Sign up to set email alerts
|

A fundamental theorem for submanifolds in semi-Riemannian warped products

Abstract: In this paper we find necessary and sufficient conditions for a nondegenerate arbitrary signature manifold M n to be realized as a submanifold in the large class of warped product manifolds εI × a M N λ (c), where ε = ±1, a : I ⊂ R → R + is the scale factor and M N λ (c) is the N-dimensional semi-Riemannian space form of index λ and constant curvature c ∈ {−1, 1}. We prove that if M n satisfies Gauss, Codazzi and Ricci equations for a submanifold in εI × a M N λ (c), along with some additional conditions, then… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 10 publications
0
0
0
Order By: Relevance