2016
DOI: 10.1142/s0218213016500317
|View full text |Cite
|
Sign up to set email alerts
|

A Fuzzy Graph Framework for Initializing k-Means

Abstract: k-Means is among the most significant clustering algorithms for vectors chosen from an underlying space S. Its applications span a broad range of fields including machine learning, image and signal processing, and Web mining. Since the introduction of k-Means, two of its major design parameters remain open to research. The first is the number of clusters to be formed and the second is the initial vectors. The latter is also inherently related to selecting a density measure for S. This article presents a two-st… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2017
2017
2023
2023

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 21 publications
0
3
0
1
Order By: Relevance
“…Bishnu and Bhattacherjee (2016) apresentaram uma generalização do k-modes para dados mistos com o objetivo de aplicar o algoritmo proposto em uma análise de custo de software. Drakopoulos et al (2016) abordaram o problema de inicialização dos centroides no k-means para dados mistos por meio de algoritmos fuzzy que dividem o conjunto de dados em grids e pela densidade determinam o ponto de centroide. Além disso, o artigo também propõe um índice de qualidade externo de agrupamento para dados mistos.…”
Section: Resultsunclassified
“…Bishnu and Bhattacherjee (2016) apresentaram uma generalização do k-modes para dados mistos com o objetivo de aplicar o algoritmo proposto em uma análise de custo de software. Drakopoulos et al (2016) abordaram o problema de inicialização dos centroides no k-means para dados mistos por meio de algoritmos fuzzy que dividem o conjunto de dados em grids e pela densidade determinam o ponto de centroide. Além disso, o artigo também propõe um índice de qualidade externo de agrupamento para dados mistos.…”
Section: Resultsunclassified
“…The advantages of and the ways for visualising the TensorFlow computations are Wongsuphasawat et al (2018). For tensor applications in social network analysis such as multiway digital influence estimation see Drakopoulos et al (2017), community structure discovery Drakopoulos et al (2018a), and graph based k-means initialization Drakopoulos et al (2016). Finally, for a genetic algorithm for clustering tensors containing linguistic and spatial data see Drakopoulos et al (2019).…”
Section: Previous Workmentioning
confidence: 99%
“…Given that the trained fuzzy cognitive maps can be represented as a fuzzy graph, clustering can be performed by fuzzy community discovery algorithms [27][28][29]. In Reference [30] fuzzy graphs have been used in a technique for estimating the number of clusters and their respective centroids. C-means fuzzy clustering has been applied to epistasis analysis [31] and image segmentation [32].…”
Section: Previous Workmentioning
confidence: 99%