Dış mekanlarda konum belirlemek için küresel konumlama sistemi, küresel uydu seyir sistemi veya cep telefonu baz istasyonları günlük hayatımızda yaygın olarak kullanılmaktadır. Fakat bina içleri gibi kapalı alanlarda bu yöntemler etkin olarak kullanılamamaktadır. Bu nedenle kapalı ortamlarda da çalışabilecek etkin konum belirleme sistemlerine ve yöntemlerine ihtiyaç vardır. Bu çalışmada, alınan sinyal gücü göstergesi (Received Signal Strength Indicator -RSSI) verisine dayalı bir konum belirleme yöntemi olan parmak izi tabanlı konum belirleme sistemlerinin hata oranlarının azaltılmasına yönelik yeni bir sistem modeli sunulmuştur. Bu yöntemde, öncelikle çok yollu yayılımın sinyal gücü üzerindeki etkisini azaltmak için parmak izi yönteminde oluşturulan ortamın radyo haritasının boyutunun küçültülmesi (ortamın hücrelere bölünmesi) amaçlanmıştır. Bunun için sınıflandırma yöntemlerinden destek vektör makinesi (Support Vector machine, SVM) kullanılmıştır. Son olarak gezgin cihazın konum tespiti için, her bir hücrede elde edilen RSSI değerlerine göre Yapay Sinir Ağı (YSA) ile çevrimdışı eğitim yapılmıştır. Çevrimdışı eğitilen ağ ve gezgin cihazdan sabit cihazlara gelen RSSI değerleri kullanılarak çevrimiçi gezgin cihazın konum tespiti yapılmıştır. Önerilen yöntemin, literatürde sıklıkla kullanılan üçgenleme ve YSA ile konum belirleme yöntemlerinden daha etkin olduğu gösterilmiştir.