Various human activities have been the main causes of surface water pollution. The uneven distribution of industrial enterprises in the territories of the main river basins of Ukraine do not always allow the real state of the water quality to be assessed. This article has three purposes: (1) the modification of the Ukrainian method for assessing the WQI, taking into account the level of negative impact of the most dangerous chemical elements, (2) the modeling of WQI assessment using fuzzy logic and (3) the creation of an artificial neural network model for the prediction of the WQI. The fuzzy logic model used four input variables and calculated one output variable (WQI). In the final stage of the study, six ANN models were analyzed, which differed from each other in various loss function optimizers and activation functions. The optimal results were shown using an ANN with the softmax activation function and Adam’s loss function optimizer (MAPE = 9.6%; R2 = 0.964). A comparison of the MAPE and R2 indicators of the created ANN model with other models for assessing water quality showed that the level of agreement between the forecast and target data is satisfactory. The novelty of this study is in the proposal to modify the WQI assessment methodology which is used in Ukraine. At the same time, the phased and joint use of mathematical tools such as the fuzzy logic method and the ANN allow one to effectively evaluate and predict WQI values, respectively.