Internet of Things (IoT) is ubiquitous, including objects or devices communicating through heterogenous wireless networks. One of the major challenges in mobile IoT is an efficient vertical handover decision (VHD) technique between heterogenous networks for seamless connectivity with constrained resources. The conventional VHD approach is mainly based on received signal strength (RSS). The approach is inefficient for vertical handover, since it always selects the target network with the strongest signal without taking into consideration of factors such as quality of service (QoS), cost, delay, etc. In this paper, we present a hybrid approach by integrating the multi-criteria based VHD (MCVHD) technique and an algorithm based on fuzzy logic for efficient VHD among Wi-Fi, Radio and Satellite networks. The MCVHD provides a lightweight solution that aims to achieving seamless connectivity for mobile IoT Edge Gateway over a set of heterogeneous networks. The proposed solution is evaluated in real time using a testbed containing real IoT devices. Further, the testbed is integrated with lightweight and efficient software techniques, e.g., microservices, containers, broker, and Edge/Cloud techniques. The experimental results show that the proposed approach is suitable for an IoT environment and it outperforms the conventional RSS Quality based VHD by minimizing handover failures, unnecessary handovers, handover time and cost of service.