Abstract. Fraud is a million dollar business and it is increasing every year. Both internal and external fraud present a substantial cost to our economy worldwide. A review of the academic literature learns that the academic community only addresses external fraud and how to detect this type of fraud. Little or no effort to our knowledge has been put in investigating how to prevent ánd to detect internal fraud, which we call 'internal fraud risk reduction'. Taking together the urge for research in internal fraud and the lack of it in academic literature, research to reduce internal fraud risk is pivotal. Only after having a framework in which to implement empirical research, this topic can further be investigated. In this paper we present the IFR² framework, deduced from both the academic literature and from current business practices, where the core of this framework suggests to use a data mining approach.