2003
DOI: 10.1111/1467-8667.00326
|View full text |Cite
|
Sign up to set email alerts
|

A Fuzzy‐Neural Network Method for Modeling Uncertainties in Soil‐Structure Interaction Problems

Abstract: Uncertainty often recurs in structural system characterization as well as in choosing the mechanical model and in calibrating it. When analyzing a structure founded in cohesionless soils, the uncertainty in system modeling comes from soil inherent variability, site conditions, construction tolerance, and failure mechanisms. In this research, a Fuzzy-Neural Network method to predict the behavior of structures built on complex cohesionless soils is proposed. The method is based on an ArtificialNeural Network (AN… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
1

Year Published

2004
2004
2022
2022

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 19 publications
(7 citation statements)
references
References 15 publications
0
6
0
1
Order By: Relevance
“…İlk kez Zadeh [16] tarafından önerilen bulanık küme kuramı, karmaşık ve tanımlanmasında güçlüklerin yaşandığı sistemlerin modellenmesinde esnek ve tutarlı bir şekilde uygulanabilmektedir [17]. Bulanık küme kuramı mühendislik jeolojisi uygulamalarında birçok araştırmacı tarafından kullanılmıştır [18]- [23]. Ayrıca, değişik zemin sınıflama sistemlerindeki belirsizliklerin azaltılması amacıyla kullanıldığı çalışmalar da mevcuttur.…”
Section: Bulanıklaştırma Süreciunclassified
“…İlk kez Zadeh [16] tarafından önerilen bulanık küme kuramı, karmaşık ve tanımlanmasında güçlüklerin yaşandığı sistemlerin modellenmesinde esnek ve tutarlı bir şekilde uygulanabilmektedir [17]. Bulanık küme kuramı mühendislik jeolojisi uygulamalarında birçok araştırmacı tarafından kullanılmıştır [18]- [23]. Ayrıca, değişik zemin sınıflama sistemlerindeki belirsizliklerin azaltılması amacıyla kullanıldığı çalışmalar da mevcuttur.…”
Section: Bulanıklaştırma Süreciunclassified
“…In recent years, the research has largely investigated the application of new computational techniques and mathematical theories to the engineering practice in designing structures (Adeli and Kumar, 1999; Saltan et al, 2002; Provenzano, 2003; Lee et al, 2011); optimizing structure costs (Sarma and Adeli, 2000a, 2000b, 2002; Adeli and Sarma, 2006; Li et al, 2010); and building structural stability (Marano et al, 2011), traffic incident detections (Adeli and Karim, 2000; Samant and Adeli, 2001; Karim and Adeli, 2002), railroad track management (Peng et al, 2011), and pavement management (e.g., Banan and Hjelmstad, 1996; Holquin‐Veras, 1997; Roberts and Attoh‐Okine, 1998; Yang et al, 2003; Loizos and Karlaftis, 2006; Bianchini and Bandini, 2010; Lajnef et al, 2011; Wang and Li, 2011). Specifically for this study, the literature included many fuzzy logic applications to pavement condition models.…”
Section: Pavement Condition Modelsmentioning
confidence: 99%
“…The training set contained two‐thirds of the initial set whereas the validation set was composed of the remaining one‐third of the data. The criteria applied in the determination of the two sets were derived from the literature review of the theory and applications of neural networks (e.g., Cammarata, 1997; Kasabov, 1998; Haykin, 1999; Provenzano, 2003). Step 2 : Clustering.…”
Section: Construction and Characteristics Of The Neuro‐fuzzy Modelmentioning
confidence: 99%