GRAS proteins belong to a plant-specific transcription factor family. Currently, 33 GRAS members including a putative expressed pseudogene have been identified in the Arabidopsis genome. With a reverse genetic approach, we have constructed a ''phenome-ready unimutant collection'' of the GRAS genes in Arabidopsis thaliana. Of this collection, we focused on loss-of-function mutations in 23 novel GRAS members. Under standard conditions, homozygous mutants have no obvious morphological phenotypes compared with those of wild-type plants. Expression analysis of GRAS genes using quantitative realtime RT-PCR (qRT-PCR), microarray data mining, and promoter::GUS reporter fusions revealed their tissuespecific expression patterns. Our analysis of protein-protein interaction and subcellular localization of individual GRAS members indicated their roles as transcription regulators. In our yeast two-hybrid (Y2H) assay, we confirmed the protein-protein interaction between SHORT-ROOT (SHR) and SCARECROW (SCR). Furthermore, we identified a new SHR-interacting protein, SCARECROW-LIKE23 (SCL23), which is the most closely related to SCR. Our large-scale analysis provides a comprehensive evaluation on the Arabidopsis GRAS members, and also our phenome-ready unimutant collection will be a useful resource to better understand individual GRAS proteins that play diverse roles in plant growth and development.