2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K) 2018
DOI: 10.23919/itu-wt.2018.8597618
|View full text |Cite
|
Sign up to set email alerts
|

A Gendered Perspective on Artificial Intelligence

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
3
1

Relationship

1
7

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 7 publications
0
2
0
1
Order By: Relevance
“…The final category considered papers proposing social solutions, with Figure 7 showing the emergent themes: 57% coded as improving algorithmic design and 33% as improving due process. The remainder fell under the improving diversity in datasets category, with the solution emerging as ensuring the data is representative (Avellan et al, 2020) and that gender bias is removed in cleaning up datasets (Parsheera, 2018). Within the algorithmic design theme, 4 main sub-themes emerged.…”
Section: Social Solutions To Algorithmic Gender Biasmentioning
confidence: 99%
“…The final category considered papers proposing social solutions, with Figure 7 showing the emergent themes: 57% coded as improving algorithmic design and 33% as improving due process. The remainder fell under the improving diversity in datasets category, with the solution emerging as ensuring the data is representative (Avellan et al, 2020) and that gender bias is removed in cleaning up datasets (Parsheera, 2018). Within the algorithmic design theme, 4 main sub-themes emerged.…”
Section: Social Solutions To Algorithmic Gender Biasmentioning
confidence: 99%
“…Finally, the use of facial processing could also have an impact on other models that do not explicitly include gender as a parameter for decision making. Research has shown a gendered bias to be present in all sorts of algorithmic systems from recruitment to text embeddings and even hate speech detectors (Xia et al, 2020;De-Arteaga et al, 2019;Prates et al, 2019;Sap et al, 2019;Dixon et al, 2018;Parsheera, 2018). Many of these studies illustrate how algorithms can acquire a gender bias even when gender is not an explicit input.…”
Section: Gender Classificationmentioning
confidence: 99%
“…Pese a que se puedan identificar referencias anteriores a ese momento, lo cierto es que es en 1955, en la Conferencia de Dartmouth(Parsheera, 2018), cuando se entiende adoptado terminológicamente el concepto de "inteligencia artificial", a manos del profesor John McCarthy.Desde entonces, hasta la actualidad, pese a la significativa evolución, especialmente en épocas recientes, la conceptualización no se ha asentado, destacando la ausencia de unanimidad en torno a este término (Hernández Giménez, 2019) y la proliferación de muy diversas definiciones sobre el término de IA (como examina Valls Prieto, 2021) que, si bien supone una riqueza conceptual, dificulta su aproximación, así como su regulación.No obstante, el estudio sobre esta sí se ha potenciado, por lo que, pese a la inexistencia de consenso en cuanto a la terminología, sí que se han realizado numerosos estudios en cuanto a su contenido, donde se acuerda que nos encontramos ante "sistemas que manifiestan un comportamiento inteligente"(Borges Blázquez, 2020, p. 55).En este sentido, pese a diversas categorizaciones existentes, destaca la distinción entre dos tipos de inteligencia artificial. Por un lado, la del tipo débil (o weak AI) -que sería equiparada con las capacidades humanas-por otro, la de tipo fuerte (o strong AI) -que superaría aquellas-.…”
unclassified