OpenCL is a standard for parallel programming of heterogeneous systems. The
benefits of a common programming standard are clear; multiple vendors can
provide support for application descriptions written according to the standard,
thus reducing the program porting effort. While the standard brings the obvious
benefits of platform portability, the performance portability aspects are
largely left to the programmer. The situation is made worse due to multiple
proprietary vendor implementations with different characteristics, and, thus,
required optimization strategies.
In this paper, we propose an OpenCL implementation that is both portable and
performance portable. At its core is a kernel compiler that can be used to
exploit the data parallelism of OpenCL programs on multiple platforms with
different parallel hardware styles. The kernel compiler is modularized to
perform target-independent parallel region formation separately from the
target-specific parallel mapping of the regions to enable support for various
styles of fine-grained parallel resources such as subword SIMD extensions, SIMD
datapaths and static multi-issue. Unlike previous similar techniques that work
on the source level, the parallel region formation retains the information of
the data parallelism using the LLVM IR and its metadata infrastructure. This
data can be exploited by the later generic compiler passes for efficient
parallelization.
The proposed open source implementation of OpenCL is also platform portable,
enabling OpenCL on a wide range of architectures, both already commercialized
and on those that are still under research. The paper describes how the
portability of the implementation is achieved. Our results show that most of
the benchmarked applications when compiled using pocl were faster or close to
as fast as the best proprietary OpenCL implementation for the platform at hand.Comment: This article was published in 2015; it is now openly accessible via
arxi