A general class of linear unconditionally energy stable schemes for the gradient flows
Zengqiang Tan,
Huazhong Tang
Abstract:This paper studies a class of linear unconditionally energy stable schemes for the gradient flows. Such schemes are built on the SAV technique and the general linear time discretization (GLTD) as well as the linearization based on the extrapolation for the nonlinear term, and may be arbitrarily high-order accurate and very general, containing many existing SAV schemes and new SAV schemes. It is shown that the semi-discrete-in-time schemes are unconditionally energy stable when the GLTD is algebraically stable,… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.