2022
DOI: 10.48550/arxiv.2203.00681
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A General Framework for Distributed Partitioned Optimization

Abstract: Decentralized optimization is widely used in large scale and privacy preserving machine learning and various distributed control and sensing systems. It is assumed that every agent in the network possesses a local objective function, and the nodes interact via a communication network. In the standard scenario, which is mostly studied in the literature, the local functions are dependent on a common set of variables, and, therefore, have to send the whole variable set at each communication round. In this work, w… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?