2022
DOI: 10.48550/arxiv.2206.05454
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A General framework for PAC-Bayes Bounds for Meta-Learning

Abstract: Meta learning automatically infers an inductive bias, that includes the hyperparameter of the base-learning algorithm, by observing data from a finite number of related tasks. This paper studies PAC-Bayes bounds on meta generalization gap. The meta-generalization gap comprises two sources of generalization gaps: the environmentlevel and task-level gaps resulting from observation of a finite number of tasks and data samples per task, respectively. In this paper, by upper bounding arbitrary convex functions, whi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?