2022
DOI: 10.48550/arxiv.2202.03999
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A general framework for quantifying uncertainty at scale and its application to fusion research

Abstract: In many fields of science, remarkably comprehensive and realistic computational models are available nowadays. Often, the respective numerical calculations call for the use of powerful supercomputers, and therefore only a limited number of cases can be investigated explicitly. This prevents straightforward approaches to important tasks like uncertainty quantification and sensitivity analysis. As it turns out, this challenge can be overcome via our recently developed sensitivity-driven dimension-adaptive sparse… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 36 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?