LetHbe a real Hilbert space. LetT1,T2:H→Hbek1-,k2-strictly pseudononspreading mappings; letαnandβnbe two real sequences in (0,1). For givenx0∈H, the sequencexnis generated iteratively byxn+1=βnxn+1-βnTw1αnγfxn+I-μαnBTw2xn,∀n∈N, whereTwi=1−wiI+wiTiwithi=1,2andB:H→His strongly monotone and Lipschitzian. Under some mild conditions on parametersαnandβn, we prove that the sequencexnconverges strongly to the setFixT1∩FixT2of fixed points of a pair of strictly pseudononspreading mappingsT1andT2.