1947
DOI: 10.1088/0950-7671/24/4/302
|View full text |Cite
|
Sign up to set email alerts
|

A General-Purpose Debye-Scherrer Camera and its Application to Work at Low Temperatures

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0

Year Published

1949
1949
2023
2023

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 16 publications
(6 citation statements)
references
References 4 publications
0
6
0
Order By: Relevance
“…The optimised parameters for equation 1 are listed here to 15 significant figures to prevent rounding errors when evaluating the equation (rounding errors can make this otherwise monotonic function nonmonotonic at T<20K): m = 5.46215569838344x10 -4 , n=86.0150000000000, p0 = 1.80595722249783x10 31 , p1 = 2.96317351342354x10 30 , p2 = 2.25855016769900x10 29 , p3 = 1.06004494945302x10 28 , p4 = 3.42305759706082x10 26 , p5 = 8.04609813573980x10 24 , p6 = 1.41998402393052x10 23 , p7 = 1.91189157411850x10 21 , p8 = 1.97428843905832x10 19 , p9 = 1.55692828415459x10 17 , p10 = 9.23827056204128x10 14 , p11 = 4.00527886712625x10 12 , p12 = 1.20273329860717x10 10 , p13 = 2.25714359192389x10 7 , p14 = 2.06989439078737x10 4 , p15 = 1.00000000000000, q0 = 2.04335860741967x10 30 , q1 = 3.32581764853519x10 29 , q2 = 2.51326102603950x10 28 , q3 = 1.16875476418741x10 27 , q4 = 3.73664547057534x10 25 , q5 = 8.68835777614448x10 23 , q6 = 1.51514697020481x10 22 , q7 = 2.01313321790028x10 20 , q8 = 2.04788881667471x10 18 , q9 = 1.58723386748412x10 16 , q10 = 9.22649460840626x10 13 , q11 = 3.90058588445197x10 11 , q12 = 1.13369350824041x10 9 , q13 = 2.02772058226054x10 6 , q14 = 1.68385961108157x10 3 .…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The optimised parameters for equation 1 are listed here to 15 significant figures to prevent rounding errors when evaluating the equation (rounding errors can make this otherwise monotonic function nonmonotonic at T<20K): m = 5.46215569838344x10 -4 , n=86.0150000000000, p0 = 1.80595722249783x10 31 , p1 = 2.96317351342354x10 30 , p2 = 2.25855016769900x10 29 , p3 = 1.06004494945302x10 28 , p4 = 3.42305759706082x10 26 , p5 = 8.04609813573980x10 24 , p6 = 1.41998402393052x10 23 , p7 = 1.91189157411850x10 21 , p8 = 1.97428843905832x10 19 , p9 = 1.55692828415459x10 17 , p10 = 9.23827056204128x10 14 , p11 = 4.00527886712625x10 12 , p12 = 1.20273329860717x10 10 , p13 = 2.25714359192389x10 7 , p14 = 2.06989439078737x10 4 , p15 = 1.00000000000000, q0 = 2.04335860741967x10 30 , q1 = 3.32581764853519x10 29 , q2 = 2.51326102603950x10 28 , q3 = 1.16875476418741x10 27 , q4 = 3.73664547057534x10 25 , q5 = 8.68835777614448x10 23 , q6 = 1.51514697020481x10 22 , q7 = 2.01313321790028x10 20 , q8 = 2.04788881667471x10 18 , q9 = 1.58723386748412x10 16 , q10 = 9.22649460840626x10 13 , q11 = 3.90058588445197x10 11 , q12 = 1.13369350824041x10 9 , q13 = 2.02772058226054x10 6 , q14 = 1.68385961108157x10 3 .…”
Section: Introductionmentioning
confidence: 99%
“…The optimised parameters for fitting equation 2 to the experimental data points are: s0 = 8.55692806695981x10 18 , s1 = 1.09556645819752x10 24 , s2 = 1.78316852655619x10 23 , s3 = 2.04804545623587x10 22 , s4 = 1.60396172331341x10 21 , s5 = 2.36491757661617x10 20 , s6 = 2.07873881554774x10 19 , s7 = 9.19266228575283x10 17 , s8 = 2.20725652279774x10 16 , s9 = 2.93361641840158x10 14 , s10 = 2.08150841393624x10 12 , s11 = 8.47737173962446x10 9 , s12 = 5.09073073293741x10 7 , s13 = 3.26718741801178x10 5 , s14 = -3.93634611081583x10 2 , s15 = 1.00000000000000, and parameters n, pi and qi are the same as for equation 1. Again, all parameters have been listed to 15 significant figures to avoid problems associated with rounding errors.…”
Section: Introductionmentioning
confidence: 99%
“…In a few cases [Glover, 1954;Gott, 1942;Smith, 1954] appreciable differences in thermal expansion by the two methods have been found, amounting to over 10 percent at the worst. However, others have found no difference exceeding experimental error except near the melting point [Austin, Saini, Weigle, and Pierce, 1940;Berry, 1953;Connell and Martin, 1951; van Duijn and van Galen, 1957;Feder and Nowick, 1958; Hume-Rothery and Andrews, 1942; Hume-Rothery and Boultbee, 1949; Hume-Rothery and Strawbridge, 1947;Baluffi, 1 1959, 1960;Wagner and Beyer, 1936]. Such differences, if real, would require high concentrations of vacancies or nonuniform distribution of lattice defects.…”
Section: Introductionmentioning
confidence: 98%
“…ReaxFF percent differences (%Δ) were computed with respect to PBE-D3 values. Experimental room temperature densities, α-alumina cell parameters, 83 and aluminum cell parameters 84 are provided for comparison. Optimized values for the model parameters were obtained by a least-squares fit and are collected in Table 2.…”
Section: ■ Resultsmentioning
confidence: 99%