“…The optimised parameters for equation 1 are listed here to 15 significant figures to prevent rounding errors when evaluating the equation (rounding errors can make this otherwise monotonic function nonmonotonic at T<20K): m = 5.46215569838344x10 -4 , n=86.0150000000000, p0 = 1.80595722249783x10 31 , p1 = 2.96317351342354x10 30 , p2 = 2.25855016769900x10 29 , p3 = 1.06004494945302x10 28 , p4 = 3.42305759706082x10 26 , p5 = 8.04609813573980x10 24 , p6 = 1.41998402393052x10 23 , p7 = 1.91189157411850x10 21 , p8 = 1.97428843905832x10 19 , p9 = 1.55692828415459x10 17 , p10 = 9.23827056204128x10 14 , p11 = 4.00527886712625x10 12 , p12 = 1.20273329860717x10 10 , p13 = 2.25714359192389x10 7 , p14 = 2.06989439078737x10 4 , p15 = 1.00000000000000, q0 = 2.04335860741967x10 30 , q1 = 3.32581764853519x10 29 , q2 = 2.51326102603950x10 28 , q3 = 1.16875476418741x10 27 , q4 = 3.73664547057534x10 25 , q5 = 8.68835777614448x10 23 , q6 = 1.51514697020481x10 22 , q7 = 2.01313321790028x10 20 , q8 = 2.04788881667471x10 18 , q9 = 1.58723386748412x10 16 , q10 = 9.22649460840626x10 13 , q11 = 3.90058588445197x10 11 , q12 = 1.13369350824041x10 9 , q13 = 2.02772058226054x10 6 , q14 = 1.68385961108157x10 3 .…”