Abstract:We develop a fractional return-mapping framework for power-law visco-elastoplasticity. In our approach, the fractional viscoelasticity is accounted through canonical combinations of Scott-Blair elements to construct a series of well-known fractional linear viscoelastic models, such as Kelvin-Voigt, Maxwell, Kelvin-Zener and Poynting-Thomson. We also consider a fractional quasilinear version of Fung's model to account for stress/strain nonlinearity. The fractional viscoelastic models are combined with a fractio… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.