A chemical two-step approach based on solvothermal technique has been adopted to synthesize the reduced graphene oxide (rGO)/Fe2O3 hybrid materials. The rGO was prepurified by acidic treatment, followed by sensitization to attach the desired functional groups. The structural, compositional, morphological and magnetic analyzes of the prepared samples were carried out using various characterization techniques. The fabricated rGO/Fe2O3 heterostructures were confirmed by X-ray diffraction analysis and Fourier transform infrared spectroscopy. Raman spectroscopy evidenced the fabrication of multilayer graphene and scanning electron microscopy was carried out to study the morphology of the prepared samples. The average particle size of Fe2O3 nanoparticles (NPs) loaded on rGO was found to be [Formula: see text]20 nm, as was observed during transmission electron microscopy. Thermogravimetric analysis of rGO/Fe2O3 hybrid structures was performed to investigate their thermal behaviors. It was evidenced that the incorporation of Fe2O3 NPs into rGO enhanced its thermal stability. Vibrating sample magnetometry showed that ferromagnetic character was induced in rGO due to involvement of Fe2O3 NPs. The rGO/Fe2O3 hybrid structures can be considered as a competent material for fabrication of various magnetic devices.