Rule-based and corpus-based machine translation (MT) have coexisted for more than 20 years. Recently, boundaries between the two paradigms have narrowed and hybrid approaches are gaining interest from both academia and businesses. However, since hybrid approaches involve the multidisciplinary interaction of linguists, computer scientists, engineers, and information specialists, understandably a number of issues exist.While statistical methods currently dominate research work in MT, most commercial MT systems are technically hybrid systems. The research community should investigate the benefits and questions surrounding the hybridization of MT systems more actively. This paper discusses various issues related to hybrid MT including its origins, architectures, achievements, and frustrations experienced in the community. It can be said that both rule-based and corpus-based MT systems have benefited from hybridization when effectively integrated. In fact, many of the current rule/corpus-based MT approaches are already hybridized since they do include statistics/rules at some point.