1985
DOI: 10.1002/cjce.5450630522
|View full text |Cite
|
Sign up to set email alerts
|

A generalized solution method for the quasi‐chemical local composition equations

Abstract: The work of Abusleme and Vera based on the Quasi-Chemical Theory of Guggenheim in terms of groups is extended to multicomponent multigroup mixtures. The nonlinear equations arising from the theory are rearranged in a particular way that allows them to be solved using a generalized Newton-Raphson method. Initial estimates of the values of the non-random factors are obtained with a Taylor expansion around the random values. No more than five iterations are required for typical systems. Practical applications of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
8
0
1

Year Published

1986
1986
2005
2005

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 25 publications
(9 citation statements)
references
References 15 publications
0
8
0
1
Order By: Relevance
“…Thus, this particular contact will make a contribution to the sum in Eq. (2) equal to w 11 e −βε 11 + w 22 e −βε 22 + w 12 e −βε 12 (3) If there are M such bonds in total in the system, Ω T is the combined probability for the simultaneous occurrence of these M events, or…”
Section: Theorymentioning
confidence: 99%
See 2 more Smart Citations
“…Thus, this particular contact will make a contribution to the sum in Eq. (2) equal to w 11 e −βε 11 + w 22 e −βε 22 + w 12 e −βε 12 (3) If there are M such bonds in total in the system, Ω T is the combined probability for the simultaneous occurrence of these M events, or…”
Section: Theorymentioning
confidence: 99%
“…(48) and by the corresponding equation of the quasi-chemical approach [1,3], which, for convenience, is reproduced here…”
Section: Applicationsmentioning
confidence: 99%
See 1 more Smart Citation
“…The non-randomness factor for unlike molecules, C kl , has been related to non-randomness factor for like-molecules using an interaction parameter through the following equation [23]:…”
Section: Theorymentioning
confidence: 99%
“…Although, the method proposed by Panayiotou and Vera [18,22] can be used to solve the equations derived from the quasi-chemical approach for ternary and quaternary systems, this method cannot be generalized for multicomponent systems. Abusleme and Vera [23] proposed a generalized method to obtain the non-randomness factors using a Newton-Raphson method. Recently, Wang and Vera [24] proposed a model, GEM-QC, based on the renormalization of the Guggenheim canonical partition function, which meets both limits of total order and total disorder, while the original Guggenheim quasi-chemical model only considered the total disorder limit.…”
Section: Introductionmentioning
confidence: 99%