1971
DOI: 10.1002/net.3230010404
|View full text |Cite
|
Sign up to set email alerts
|

A generalized upper bounding algorithm for multicommodity network flow problems

Abstract: An algorithm for solving min‐cost or max‐flow multicommodity flow problems is described. It is a specialization of the simplex method, which takes advantage of the special structure of the multicommodity problem. The only nongraph or nonadditive operations in a cycle involve the inverse of a working basis, whose dimension is the number of currently saturated arcs. Efficient relations for updating this inverse are derived.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
27
0
3

Year Published

1975
1975
2013
2013

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 51 publications
(31 citation statements)
references
References 3 publications
1
27
0
3
Order By: Relevance
“…It is well known and easily proved (see [16,261) A graph G is a finite set V of vertices (nodes) 01, . .…”
Section: Basis Structurementioning
confidence: 99%
“…It is well known and easily proved (see [16,261) A graph G is a finite set V of vertices (nodes) 01, . .…”
Section: Basis Structurementioning
confidence: 99%
“…On the other hand, if a row is to be added to V~~ as well as a column, it is necessary to compute the pivot row element in 0 Bl ' Thus, letting e i denote the unit row vector as previously defined in the generation of the updated pivot row , this element of O 3~ is given by e i B11 (e k -B 12 ~B 2~ (27) This can be computed by algorithm C2, using algorithm Bl in the first part , and noting that the matrix stipulation for C may be replaced by the stipulation that C is a column vector. In addition, PNET/LP keeps a variably dimensioned working space array which contains the pool of unique non-zero elements of A and V ' .…”
Section: The Basis Exchangementioning
confidence: 99%
“…Ainsi, il n'existe pas de critère simple permettant de reconnaître si un réseau donné est admissible ou non : si on désire connaître la réponse avec certitude, et si les flots ne sont pas astreints à être entiers, le recours à la programmation linéaire, sous une forme ou sous une autre, est inévitable (références [11], [12], [14]). …”
Section: Il Le Problème Bu Multiflot Compatibleunclassified
“…La seconde méthode, quant à elle, évite ces écueils en travaillant directement sur la matrice des contraintes de (PL); <J'autre part, en exploitant la structure « en escalier » de (PL) elle permet de réduire la dimension de la base à une taille raisonnable, de l'ordre de MxM (références [6] et [14]). Mais des réseaux à 500 arêtes sont fréquents en pratique, et le stockage, la mise à jour et l'inversion de matrices 500x500 sont des opérations coûteuses en temps calcul et en nombre de mots-mémoire.…”
Section: Minouxunclassified