2021
DOI: 10.5194/gmd-2021-165
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Generative Adversarial Model for Radar Echo Extrapolation Based on Convolutional Recurrent Units

Abstract: Abstract. Precipitation nowcasting play a vital role in preventing meteorological disasters and doppler radar data acts as an important input for nowcasting models. The traditional extrapolation method is difficult to model highly nonlinear echo movements. The key challenge of the nowcasting mission lies in achieving high-precision radar echo extrapolation. In recent years, machine learning has made a great progress in the extrapolation of weather radar echoes. However, most of models neglect the multi-modal c… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?