The purpose of this article is to develop a methodology to apply to multi-objective optimization algorithms aimed at energy efficiency in buildings, considering aspects such as incremental cost, energy consumption, greenhouse gas emissions and energy efficiency levels of lighting and air conditioning system, according to the mandatory technical regulation in public buildings in Brazil. Presenting a solution to assist in the decision making of engineers, architects or building managers for the optimal arrangements’ choice for lighting and air conditioning equipment, considering each built environment and project profile. For the validation process, a basic building was created with 15 rooms spread over three floors, according to the most common construction parameters in the North of Brazil. First, different combinations of objective-function candidates were investigated to compose the multi-objective algorithm fitness function, analyzing its performance in two central scenarios: (1) adding some “baits” in air conditioning equipment files, and (2) without this inclusion. Thus, it was found that considering only three objective functions—incremental cost, energy consumption and the air conditioning energy efficiency coefficient—it is possible to get optimal non-dominated solutions in both scenarios, thus highlighting the robustness of the proposed methodology.