Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches. Substation engineers commission these IEDs to assess the appropriate measurements for monitoring, control, power system protection, and communication applications. Like real electrical utility substations, complex electrical substation grid testbeds (ESGTs) need to be assessed for measuring current and voltage signals in monitoring, power system protection, control (synchro check), and communication applications that are limited by small-measurement percentage errors. In the process of setting an ESGT with real-time simulators and IEDs in the loop, protective relays, power meters, and communication devices must be commissioned before running experiments. In this study, an ESGT with IEDs and distributed ledger technology was developed. The ESGT with a real-time simulator and IEDs in the loop was satisfactorily assessed and commissioned. The commissioning and problem-solving tasks of the testbed are described to define a method with flowcharts to assess possible troubleshooting in ESGTs. This method was based on comparing the simulations versus IED measurements for the phase current and voltage magnitudes, three-phase phasor diagrams, breaker states, protective relay times with selectivity coordination at electrical faults, communication data points, and time-stamp sources.