2019
DOI: 10.1016/j.promfg.2020.01.356
|View full text |Cite
|
Sign up to set email alerts
|

A Genetic Algorithm Approach for Multi Objective Cross Dock Scheduling in Supply Chains

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 16 publications
(7 citation statements)
references
References 14 publications
0
4
0
1
Order By: Relevance
“…Additionally, the algorithm may identify opportunities for consolidating shipments to reduce the number of vessel trips and optimize fuel consumption 76,77 . It may also prioritize deliveries based on urgency and demand 78 , allocating resources efficiently to meet critical needs while optimizing overall route efficiency.…”
Section: Utilization Efficiencymentioning
confidence: 99%
“…Additionally, the algorithm may identify opportunities for consolidating shipments to reduce the number of vessel trips and optimize fuel consumption 76,77 . It may also prioritize deliveries based on urgency and demand 78 , allocating resources efficiently to meet critical needs while optimizing overall route efficiency.…”
Section: Utilization Efficiencymentioning
confidence: 99%
“…The problem studied in this article was used to provide a model for the optimal sequence of trucks and the cost of operations within the supply chain concerning three objectives (minimizing the cost of transportation, minimizing the sequence of transporting trucks, and minimizing carbon dioxide emissions) [42][43][44][45]. The mathematical model approach is complicated due to the high number of variables and limitations related to the number of trucks sending and receiving and the number of products required to solve the problem.…”
Section: Conclusion and Suggestionsmentioning
confidence: 99%
“…Así mismo las investigaciones se enfocan en mejorar la sostenibilidad de las cadenas, como por ejemplo, midiendo y reduciendo la huella de carbono generada [23]. Otros trabajos se han enfocado en la optimización de la producción, en problemas específicos como la programación y asignación de turnos de despacho en muelles [24], en sistemas de planeación en cargas [25] y en mejoramiento de mecanismos de distribución en sistemas de bodegas [26].…”
Section: Algoritmos Genéticosunclassified