Clostridioides (formerly Clostridium) difficile produces two major toxins, TcdA and TcdB, upon entry into stationary phase. Transcription of tcdA and tcdB requires the specialized sigma factor, σ , which also directs RNA Polymerase to transcribe tcdR itself. We fused a gene for a red fluorescent protein to the tcdA promoter to study toxin gene expression at the level of individual C. difficile cells. Surprisingly, only a subset of cells became red fluorescent upon entry into stationary phase. Breaking the positive feedback loop that controls σ production by engineering cells to express tcdR from a tetracycline-inducible promoter resulted in uniform fluorescence across the population. Experiments with two regulators of tcdR expression, σ and CodY, revealed neither is required for bimodal toxin gene expression. However, σ biased cells toward the Toxin-ON state, while CodY biased cells toward the Toxin-OFF state. Finally, toxin gene expression was observed in sporulating cells. We conclude that (i) toxin production is regulated by a bistable switch governed by σ , which only accumulates to high enough levels to trigger toxin gene expression in a subset of cells, and (ii) toxin production and sporulation are not mutually exclusive developmental programs.