Background
Intrauterine adhesion (IUA) is a common cause of clinically refractory infertility, and there exists significant heterogeneity in the treatment outcomes among IUA patients with the similar severity after transcervical resection of adhesion(TCRA). The underlying mechanism of different treatment outcomes occur remains elusive, and the precise contribution of various cell subtypes in this process remains uncertain.
Results
Here, we performed single-cell transcriptome sequencing on 10 human endometrial samples to establish a single-cell atlas differences between patients who responded to estrogen therapy and those who did not. The results showed increased infiltration of immune cells such as monocyte macrophages, T cells, and natural killer (NK) cells in patients who did not respond to estrogen therapy. Our findings indicate that distinct fibroblast subsets are implicated in the modulation of the Wnt, Hippo, and Hedgehog signaling pathways, as evidenced by functional enrichment analyses. This may have implications for the therapeutic efficacy in patients with IUA. Furthermore, we delineated the markers and transcriptional status of different macrophage subsets and identified two cell clusters, CXCL10high and CCL4L2high macrophage subsets, which are intimately associated with inflammation and fibrosis. The state of fibrosis and inflammatory response in human endometrial tissues with disparate treatment outcomes is revealed, and providing evidence to clarify the underlying determinants of sensitivity to estrogen therapy.
Conclusions
We described the transcriptional status of different cell subtypes in the two groups of patients, providing new ideas for exploring the molecular mechanism of the difference in the effectiveness of estrogen therapy in patients, and providing theoretical basis for providing precise and individualized treatment plans for IUA patients.
Supplementary Information
The online version contains supplementary material available at 10.1186/s13062-024-00583-x.