Background: Copy number variation (CNV), an important source of genomic structural variation, can disturb genetic structure, dosage, regulation and expression, and is associated with phenotypic diversity and adaptation to local environments in mammals. In the present study, 24 resequencing datasets were used to characterize CNVs in three ecotypic populations of Tibetan sheep and assess CNVs related to domestication and adaptations in the Qinghai-Tibetan Plateau.Results: A total of 87,832 CNV events accounting for 0.3% of the sheep genome were detected in three Tibetan sheep populations. After merging the overlapping CNVs, 2777 CNV regions (CNVRs) were obtained, among which 1098 CNVRs were shared by the three populations. The average length of these CNVRs was more than 3 kb, and duplication events were more frequent than deletions. Functional analysis showed that the shared CNVRs were significantly enriched in 56 GO terms and 18 KEGG pathways that were mainly concerned with ABC transporters, olfactory transduction and oxygen transport. Moreover, 188 CNVRs overlapped with 97 quantitative trait loci (QTLs), such as growth and carcass QTLs, immunoglobulin QTLs, milk yield QTLs and fecal counts QTLs. PCDH15, APP and GRID2 overlapped with body weight QTLs. Furthermore, Vst analysis at each CNVR showed that RUNX1, LOC101104348, LOC105604082 and PAG11 were highly divergent between HTS and VTS, and RUNX1 and LOC101111988 were significantly differentiated between VTS and OTS. Meaningfully, the duplication of RUNX1 may facilitate the hypoxia adaptation of OTS and HTS in QTP, which deserves further research in detail.Conclusions: In this study, we represented the genome-wide distribution characteristics of CNVs in Tibetan sheep and provided a valuable genetic variation resource, which will facilitate the elucidation of the genetic basis underlying the distinct phenotypic traits and local adaptation of Tibetan sheep.