The orange wheat blossom midge Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae), an economically important pest, has caused serious yield losses in most wheat-growing areas worldwide in the past half-century. A high-quality chromosome-level genome for S. mosellana was assembled using PacBio long-read, Illumina short-read, and Hi-C sequencing technologies. The final genome assembly was 180.69 Mb, with contig and scaffold N50 sizes of 998.71 Kb and 44.56 Mb, respectively. Hi-C scaffolding reliably anchored four pseudochromosomes, accounting for 99.67% of the assembled genome. In total, 12,269 protein-coding genes were predicted, of which 91% were functionally annotated. Phylogenetic analysis indicated that S. mosellana and its close relative, the swede midge Contarinia nasturtii, diverged about 32.7 million years ago. The S. mosellana genome showed high chromosomal synteny with the genome of Drosophila melanogaster and Anopheles gambiae. The key gene families involved in the detoxification of plant secondary chemistry were analyzed. The high-quality S. mosellana genome data will provide an invaluable resource for research in a broad range of areas, including the biology, ecology, genetics, and evolution of midges, as well as insect–plant interactions and coevolution.