2024
DOI: 10.1038/s41598-024-68172-6
|View full text |Cite
|
Sign up to set email alerts
|

A geometric approach for accelerating neural networks designed for classification problems

Mohsen Saffar,
Ahmad Kalhor,
Ali Habibnia

Abstract: This paper proposes a geometric-based technique for compressing convolutional neural networks to accelerate computations and improve generalization by eliminating non-informative components. The technique utilizes a geometric index called separation index to evaluate the functionality of network elements such as layers and filters. By applying this index along with center-based separation index, a systematic algorithm is proposed that optimally compresses convolutional and fully connected layers. The algorithm… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 41 publications
0
0
0
Order By: Relevance