Subspecific variation is widespread in vertebrates. Within Africa, several mammals have extensive geographic distributions with attendant morphological, ecological, and behavioural variations, which are often used to demarcate subspecies. In the present study, we use a primate species, the vervet monkey, Cercopithecus aethiops, as a case study for intraspecific divergence in widespread mammals, assessed through hard tissue morphology. We examine intraspecific differences in size, shape, and non-allometric shape from a taxonomic perspective, and discuss the macroevolutionary implications of findings from microevolutionary analyses of geographic variation. A geometric morphometric approach was used, employing 86 three-dimensional landmarks of almost 300 provenanced crania. Many of the taxonomic differences in skull morphology between vervet populations appear to be related to geographic proximity, with subspecies at opposite extremes of a west-to-east axis showing greatest divergence, and populations from central and south Africa being somewhat intermediate. The classification rate from discriminant analyses was lower than that observed in other African primate radiations, including guenons as a whole and red colobus. Nonetheless, taxonomic differences in shape were significant and not simply related to either geography or size. Thus, although shifts in size may be an important first step in adaptation and diversification, with size responding more quickly than shape to environmental change, the six vervet taxa currently recognized (either as species or subspecies) are not simply allometrically scaled versions of one another and are probably best viewed as subspecies. Holding allometry constant when examining inter-population differences in shape may thus help to reveal the early stages of evolutionary divergence. The vervet case study presented here hence has relevance for future studies examining intraspecific differentiation in other large mammals, particularly through the methods used to identify small but biologically meaningful divergence, with attendant implications for conservation planning. (C) 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 823-843