The thermally activated delayed fluorescence (TADF) originating from highlevel intersystem crossing (hRISC) presents great potential in realizing a more full utilization of triplet excitons. In this study, DPA-FBP and TPA-FBP were doped in a PMMA film with different weight fractions to study the effect of aggregation on the luminescence properties. As a result, the TADF feature from hRISC was only found in the 50 wt % doped film, whereas the 1 wt % doped film only shows prompt fluorescence. The fs-TA spectroscopy results reveal that the 50 wt % film will generate charge transfer species to lower the energy gap, so that the highlying triplet exciton can transition back to the singlet state, whereas that of the 1 wt % film will quickly transition to the lowest triplet state due to the unfavorable energy splitting. This study provides a new insight into aggregation effects on the excited-state properties of hot exciton materials and the solid-state photodynamic.