Abstract. In some computer vision applications, it is necessary to calibrate the geometry relationships of nonoverlapping cameras. However, due to lacking a common field of view, the calibration of this camera topology is quite difficult. A calibration method for nonoverlapping cameras is proposed and investigated. The proposed method utilizes several light planes, which can be generated by a line laser projector or a rotary laser level, as the calibration objects. The fact that local light planes available in different cameras are identical in global coordinates is used to recover the geometries. Results on both synthetic and real data show the validity and performance of the proposed method. The given method is simple and flexible, which can be used to calibrate geometry relationships of cameras located in large-scale space without expensive equipment such as theodolites and laser trackers. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.