Cancer, aging, and neurodegeneration are all associated with DNA damage and repair in complex fashions. Aging appears to be a cell and tissue-wide process linked to the insulin-dependent pathway in several DNA repair deficient disorders, especially in mice. Cancer and neurodegeneration appear to have complementary relationships to DNA damage and repair. Cancer arises from surviving cells, or even stem cells, that have down-regulated many pathways, including apoptosis, that regulate genomic stability in a multi-step process. Neurodegeneration however occurs in nondividing neurones in which the persistence of apoptosis in response to reactive oxygen species is, itself, pathological. Questions that remain open concern: sources and chemical nature of naturally occurring DNA damaging agents, especially whether mitochondria are the true source; the target tissues for DNA damage and repair; do the human DNA repair deficient diseases delineate specific pathways of DNA damage relevant to clinical outcomes; if naturally occurring reactive oxygen species are pathological in human repair deficient disease, would anti-oxidants or anti-apoptotic agents be feasible therapeutic agent?