Many real life problems can be stated as a continuous minimax optimization problem. Well-known applications to engineering, finance, optics and other fields demonstrate the importance of having reliable methods to tackle continuous minimax problems. In this paper a new approach to the solution of continuous minimax problems over reals is introduced, using tools based on modal intervals. Continuous minimax problems, and global optimization as a particular case, are stated as the computation of semantic extensions of continuous functions, one of the key concepts of modal intervals. Modal intervals techniques allow to compute, in a guaranteed way, such semantic extensions by means of an efficient algorithm. Several examples illustrate the behavior of the algorithms in unconstrained and constrained minimax problems.