2022
DOI: 10.37394/23206.2021.20.78
|View full text |Cite
|
Sign up to set email alerts
|

A Globally Convergent Hybrid FR-PRP Conjugate Gradient Method for Unconstrained Optimization Problems

Abstract: In this paper, a new conjugate gradient (CG) parameter is proposed through the convex combination of the Fletcher-Reeves (FR) and Polak-Ribiére-Polyak (PRP) CG update parameters such that the conjugacy condition of Dai-Liao is satisfied. The computational efficiency of the PRP method and the convergence profile of the FR method motivated the choice of these two CG methods. The corresponding CG algorithm satisfies the sufficient descent property and was shown to be globally convergent under the strong Wolfe lin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 32 publications
0
0
0
Order By: Relevance