Advanced developments in handheld devices' interactive 3D graphics capabilities, processing power, and cloud computing have provided great potential for handheld augmented reality (HAR) applications, which allow users to access digital information anytime, anywhere. Nevertheless, existing interaction methods are still confined to the touch display, device camera, and built-in sensors of these handheld devices, which suffer from obtrusive interactions with AR content. Wearable fabric-based interfaces promote subtle, natural, and eyes-free interactions which are needed when performing interactions in dynamic environments. Prior studies explored the possibilities of using fabric-based wearable interfaces for head-mounted AR display (HMD) devices. The interface metaphors of HMD AR devices are inadequate for handheld AR devices as a typical HAR application require users to use only one hand to perform interactions. In this paper, we aim to investigate the use of a fabric-based wearable device as an alternative interface option for performing interactions with HAR applications. We elicited user-preferred gestures which are socially acceptable and comfortable to use for HAR devices. We also derived an interaction vocabulary of the wrist and thumb-to-index touch gestures, and present broader design guidelines for fabric-based wearable interfaces for handheld augmented reality applications. Appl. Sci. 2019, 9, 3177 2 of 21 and portable enough to be carried wherever users go. With this ubiquitous availability, HAR allows us to develop and design innovative applications in navigation, education, gaming, tourism, interactive shopping, production, marketing, and others [3]. Thus, smartphones have been identified as an ideal platform for HAR experiences in various outdoor and indoor environments [4][5][6].In order to interact with the virtual world using HAR displays, a user needs to position and orientate the device using one hand and manipulate the virtual 3D objects with the other hand. In general, the touchscreen is used as a primary interface to interact with AR content [7,8]. In addition, the various built-in sensors in the handheld devices-such as cameras, GPS, compass, accelerometers, and gyroscope-enable to precisely determine the position and orientation of the device in the real world (e.g., [8][9][10]). Furthermore, the device's camera is used to naturally capture the user's mid-air hand movements while holding the device [11,12].Like in HMD AR, manipulations such as selecting and moving virtual 3D information are primary interactions in HAR devices [13]. The existing HAR interaction methods, such as touch input, offer promising solutions to manipulate virtual content (e.g., [14]). However, they still have substantial limitations. For instance, touch input is limited by the device's physical boundary and usability suffers as on-screen content becomes occluded by finger (i.e., finger occlusions [15,16]). Also, 2D inputs on the touch surface do not directly support manipulating the six degrees of freedom of a virt...