This paper presents an effective approach for robust design optimization of car-door structures with spatially varied material properties. This spatially varied material property causes structural response quantities; for example, the natural frequency and the lateral stiffness coefficient become random variables. In this regard, the Karhunen-Loève expansion is first used to represent the elastic modulus and the mass density random fields as a series of random variables. Then, a stochastic finite-element model is formulated for uncertainty quantification of the car-door structure. Combined with a polynomial-based response surface model to mimic the true performance indicator, this allows one to efficiently evaluate probability constraints for the robust design optimization of the uncertain car-door structure. In numerical simulations, design variables of the uncertain car-door structure are defined as thickness values of the tailor rolled blank structure at various regions, whereas multiple design objectives are formulated via the structural weight, the first-order natural frequency, and the lateral stiffness coefficient. Results have shown that the mean value of performance indicators can be generally improved, whereas the response variance is further minimized to archive the robust design objective. The probability-based constraint is significant to relate the Pareto optimum set to the targeted structural safety level. The proposed approach is simple, suggesting an attractive tool for the robust design optimization of car-door structures with spatially varied material uncertainties.