2024
DOI: 10.3390/rs16224277
|View full text |Cite
|
Sign up to set email alerts
|

A Gradual Adversarial Training Method for Semantic Segmentation

Yinkai Zan,
Pingping Lu,
Tingyu Meng

Abstract: Deep neural networks (DNNs) have achieved great success in various computer vision tasks. However, they are susceptible to artificially designed adversarial perturbations, which limit their deployment in security-critical applications. In this paper, we propose a gradual adversarial training (GAT) method for remote sensing image segmentation. Our method incorporates a domain-adaptive mechanism that dynamically modulates input data, effectively reducing adversarial perturbations. GAT not only improves segmentat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?