Nanostructured metal chalcogenides (NMCs) and carbon nanostructures (CNS) are attracting significant attention due to their features such as high stability in an acidic environment, especially if they have a significant oxygen reduction activity and remarkable superconducting properties. The broad range of CNS exhibits novel physicochemical properties, and thus it is triggering intense research about carbon nanoscience with numerous applications. In this context, new synthesis routes are designed under moderate conditions, which are definitely needed in order to simplify the process, reduce costs, and allow the production of NMCs at lower temperatures and CNS whose size and shape can be controlled. Some related studies about Pt based on sulfides and selenides, transition metal chalcogenides (TMCs), and carbon nanostructures (nanotubes and graphene) are revealed here; however, they show promise for fuel cells that these NMCs, CNS, or even NMC-CNS materials have been applied for other energy devices. Until now, a good response for cathodic reactions is employing TMCs based on tungsten and CNS without metal. According to experimental results and in terms of catalytic activity, durability, and chemical/electrochemical stability, much more research is required to produce commercially valid non-noble catalysts, electrocatalysts, or supports; however, one approach on this field is metal-free CNS.