1994
DOI: 10.2307/2118600
|View full text |Cite
|
Sign up to set email alerts
|

A Harish-Chandra Homomorphism for Reductive Group Actions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

4
106
0
6

Year Published

1997
1997
2017
2017

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 84 publications
(116 citation statements)
references
References 23 publications
4
106
0
6
Order By: Relevance
“…This will also establish Theorem 1.2 since the two results are equivalent in view of Theorem 3.1. Our proof uses some results from [15] and [18] concerning the derived action of the Lie algebra of K on the space C[V ]. We begin by relating this action to the moment map.…”
Section: Geometric Criteriamentioning
confidence: 99%
“…This will also establish Theorem 1.2 since the two results are equivalent in view of Theorem 3.1. Our proof uses some results from [15] and [18] concerning the derived action of the Lie algebra of K on the space C[V ]. We begin by relating this action to the moment map.…”
Section: Geometric Criteriamentioning
confidence: 99%
“…пп. 6.3, 6.5 в [4]). Автор благодарит Э. Б. Винберга и Д. А. Тимашева за помощь и обсуждение этих результатов в процессе их появления, а также многочисленные замечания по предварительному тексту статьи.…”
Section: список основных обозначенийunclassified
“…Результаты настоящей работы тесно связаны с общими результатами Кнопа [3], [4] об эквивариантной симплектической геометрии кокасательных расслоений гладких -многообразий (подробнее см. п.…”
unclassified
“…Remember that in general Z(U(g) K ) Z(g) ⊗ Z(k) (Knop's Theorem [9]). Given h 0 and t 0 Cartan subalgebras of g 0 and k 0 respectively, we will denote γ G h and γ K t the Harish-Chandra homomorphisms of Z(g) and Z(k) with respect to the subalgebras h and t: Then we have…”
Section: Definitionmentioning
confidence: 99%