A kinetic model was developed using FactSage Macro Processing to simulate the re-oxidation of ultra-low carbon steel via different oxidising slags. The calculated results show good agreement with experimental laboratory thermal simulation data. Therefore, the model can be used to predict the change behaviour of slag-metal-inclusion in the re-oxidation reaction of liquid steel. It can provide prediction and guidance for an accurate secondary oxidation control process. During the slag reoxidation process, when the oxygen in the steel is supersaturated and the slag is low in oxidation, it can easily form stick-like and dendritic shape inclusions of Al 2 o 3 in steel. As the (FeO) content increases in slag, the oxygen transfer from slag to steel is evident, and the inclusion size increases, showing clusters and spherical shapes. In addition, supersaturated oxygen in steel easily forms unstable Al 2 o 3-tio x inclusions with [Ti]. As the components of liquid steel tend to be uniform, the Al 2 o 3-tio x inclusions will decompose and disappear, forming stable Al 2 o 3 and tio 2 inclusions. The number of inclusions can be reduced by increasing the basicity and the ratio of CaO to Al 2 o 3 in the initial slag.