2015
DOI: 10.7169/facm/2015.52.1.10
|View full text |Cite
|
Sign up to set email alerts
|

A height inequality for rational points on elliptic curves implied by the abc-conjecture

Abstract: Abstract. In this short note we show that the uniform abc-conjecture puts strong restrictions on the coordinates of rational points on elliptic curves. For the proof we use a variant of Vojta's height inequality formulated by Mochizuki. As an application, we generalize a result of Silverman on elliptic non-Wieferich primes.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
1

Year Published

2016
2016
2020
2020

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 11 publications
0
5
0
1
Order By: Relevance
“…The same arguments could not be applied to other elliptic curves due to the unavailability of an inequality involving the height of points. This case was later settled by Kühn and Müller [7]. We shall discuss their result and prove the following Theorem 1.0.4.…”
Section: Introductionmentioning
confidence: 74%
“…The same arguments could not be applied to other elliptic curves due to the unavailability of an inequality involving the height of points. This case was later settled by Kühn and Müller [7]. We shall discuss their result and prove the following Theorem 1.0.4.…”
Section: Introductionmentioning
confidence: 74%
“…Silverman in [27] established that for elliptic divisibility sequences over Q the number of non-primitive divisors is finite. This result was investigated further by several authors [4,5,10,12,15,29]. In another direction Streng [31] generalized the primitive divisor theorems for curves with complex multiplication.…”
Section: Introductionmentioning
confidence: 90%
“…n =2, 4,5,8,11,13,16,17,19,22,23,25,29,31,32,34,37,38,41,43,44,46,47,53,58,59, 61, 62, 64, 65, 67 . .…”
Section: Clusteringmentioning
confidence: 99%
“…Of the some 200 highest quality triples, we find 47 corresponding to Hall triples on E D . For reference, we tabulate 10 with the highest quality in 3 4 · 23 3 · 109 2 · 3 · 11 · 23 2 · 109 · 292561 3 · 23 2 · 109 1.62991 {1.9, 2.6} 2 9 · 3 2 · 5 2 · 7 · 23 2 2 · 3 2 · 19 · 23 · 227 · 22367 2 2 · 3 2 · 11 2 · 23 1.62599 {8.0, 22.8} 2 4 · 3 8 · 5 2 · 7 · 29 2 · 31 4 2 · 3 · 5 · 7 · 29 2 · 31 2 · 41579743 · 241510369 2 · 3 · 5 · 7 · 19 · 29 2 · 31 2 · 1307 1.62349 {0.0, 0.0} 2 4 · 3 4 · 5 5 · 13 2 · 17 2 · 3 2 · 5 2 · 13 2 · 2953 · 5588861 2 · 3 2 · 5 2 · 13 2 · 283 1.58076 {0.96, 0.9} 2 · 3 3 · 5 2 · 7 3 · 5 · 7 · 13 · 673 3 · 5 · 7 1.56789 {0.9, 0.8} 2 4 · 5 4 · 17 · 37 2 3 2 · 5 2 · 7 · 37 · 60925103 5 2 · 37 · 239 1.50284 {0.1, 0.04} 2 8 · 3 3 · 7 5 · 13 2 2 2 · 3 · 7 · 11 · 13 2 · 30949 · 569201 2 2 · 3 · 5 2 · 7 · 13 2 · 7937 1.49762 {0.0, 0.0} 3 2 · 5 3 · 13 4 · 17 · 139 2 · 151 · 4423 3 2 · 13 · 17 · 47 · 73 · 151 · 1399 · 4423 · 6691 · 438620957 2 · 3 2 · 11 · 13 · 17 · 151 · 4423 1.49243 {0.1, 0.0} 2 5 · 3 6 · 7 3 · 103 · 127 · 941 2 3 · 5 · 7 · 31 · 127 · 673 · 941 2 · 327823 · 349381 3 · 7 · 73 · 127 · 941 2 1.49159 {2.8, 4.6} 2 5 · 3 3 · 5 · 13 2 · 13 · 19 · 29 · 929 2 · 11 2 · 13 1.48887 {0.7, 0.6} Another statement, which follows from the uniform ABC conjecture for number fields, is an interesting bound on the actual points on an elliptic curve [37]. Adhereing to our notation in Appendix B, let P = (s/d 2 , t/d 3 ) be a point on an elliptic curve E in Weierstraß form, then there is the conjecture that for all > 0, there exists a constant K such that max 1 2 log |s| , log |d| ≤ (1 + ) log Rad(d) + K , (4.21)…”
Section: Relations To Other Statementsunclassified