Proceedings of the 7th International Joint Conference on Computational Intelligence 2015
DOI: 10.5220/0005606800490057
|View full text |Cite
|
Sign up to set email alerts
|

A Heteroassociative Learning Model Robust to Interference

Abstract: Neuronal models of associative memories are recurrent networks able to learn quickly patterns as stable states of the network. Their main acknowledged weakness is related to catastrophic interference when too many or too close examples are stored. Based on biological data we have recently proposed a model resistant to some kinds of interferences related to heteroassociative learning. In this paper we report numerical experiments that highlight this robustness and demonstrate very good performances of memorizat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
(18 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?