2024
DOI: 10.3390/a17020068
|View full text |Cite
|
Sign up to set email alerts
|

A Heterogeneity-Aware Car-Following Model: Based on the XGBoost Method

Kefei Zhu,
Xu Yang,
Yanbo Zhang
et al.

Abstract: With the rising popularity of the Advanced Driver Assistance System (ADAS), there is an increasing demand for more human-like car-following performance. In this paper, we consider the role of heterogeneity in car-following behavior within car-following modeling. We incorporate car-following heterogeneity factors into the model features. We employ the eXtreme Gradient Boosting (XGBoost) method to build the car-following model. The results show that our model achieves optimal performance with a mean squared erro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?