The nature of time has long been an obsession for philosophers, scientists, and laymen. This nearly universal interest in time is encapsulated by the fact that the quotation "Time is nature's way of keeping everything from happening at once" has been attributed to both Woody Allen and Albert Einstein! Although some argue that time is an illusion, ongoing work has revealed that most organisms possess an internal oscillator, the circadian clock, which has a pervasive influence on growth, development, and responses to the environment. Studies of circadian rhythms in plants reveal that because everything doesn't happen at once, plants have evolved sophisticated mechanisms to partition physiological processes so that they occur at the most advantageous times, both on seasonal and daily scales.
A BRIEF HISTORY OF TIMINGIt is apparent to even the most casual observer that plant physiology is strongly influenced by time: for example, plants generally fix carbon during the day but are carbon consumers at night, and plant reproduction is strongly tied to the seasons. Although these changes in physiology are clearly linked to changes in the environment, they are also strongly influenced by the plant circadian clock. Studies spanning the past 300 years have revealed that many features of plant physiology are affected by the circadian clock (McClung, 2006). Clock-influenced processes range from once-in-a-lifetime events such as germination and the transition from vegetative to reproductive growth, to annual events such as the onset of flowering or winter dormancy, to daily processes such as rhythmic movements of petals and leaves and emission of floral fragrance. Ongoing, intensive investigation into clock-regulated processes are revealing that plants are even more sophisticated time keepers than we previously thought, with most or all aspects of plant physiology influenced by the circadian system. The molecular nature of the plant oscillator is now becoming clear, and the development of mathematical models describing this clock are raising hopes that we will someday be able to predict how particular environmental conditions will interact with a given genotype to shape plant growth and development in the real world.HOW DO PLANTS TELL TIME?