Bitumen production from the Grosmont formation is enabled by bitumen-viscosity reduction caused by heating with steam, and is driven by three processes: thermal expansion, gravity drainage, and spontaneous imbibition. Gravity drainage is the dominant recovery mechanism. Maintaining a balance of injected and produced fluid is indicative of good performance. The projected steam/oil ratio (SOR) for the carbonate Grosmont formation is comparable to that of the clastic Clearwater formation; the impact of lower porosity is compensated by lower water saturation.On the basis of the experience from the pilot project, a followup development of the Grosmont formation relies on cyclic operation of injection and production. Saleski Phase 1, approved by the Alberta Energy Regulator, is designed for 1700-m 3 /d oil capacity from the Grosmont formation. For the first time, probable undeveloped reserves have been assigned to a fractured-carbonate bitumen reservoir. The cyclic-to-continuous steam-assisted-gravity-drainage drainage (C2C-SAGD) concept, where initial cyclic operation of individual wells is converted into continuous injection and production with well pairs as the reservoir depletion matures, intends to maximize recovery in future exploitation projects.Spontaneous Imbibition. In general, fractured carbonate reservoirs are initially oil-wet (Al-Hadhrami and Blunt 2001). Specific to the Saleski Grosmont, laboratory experiments are currently being executed to confirm the wettability. Assuming bitumen is the wetting phase (Fig. 2, left), capillary pressure in the matrix is low at high bitumen saturations. Fluid movements into or from